

BODHI

International Journal of Research in
Humanities, Arts and Science

An online, Peer reviewed, Refereed and Quarterly Journal

Vol : 2 No : 1 October 2017 ISSN : 2456-5571

CENTRE FOR RESOURCE, RESEARCH &
PUBLICATION SERVICES (CRRPS)
www.crrps.in | www.bodhijournals.com

 66 Bodhi International Journal of Research in Humanities, Arts and Science

 Vol.2 No. 1 October 2017 e-ISSN: 2456-5571

RARE APPLICATION OF TREES: FORENSICS PURPOSES

K. Raja Saravana Kumar
Assistant Professor of Computer Science

The Madura College, Madurai, Tamil Nadu, India

Abstract
 Today’s forensic techniques for databases are pri-marily focused on logging mechanisms and artifacts accessible in the
database management systems (DBMSs). While log files, plan caches, cache clock hands, etc. can reveal past transactions, a
malicious administrator’s modifications might be much more difficult to detect, because he can cover his tracks by also manipulating
the log files and flushing transient artifacts such as caches. The internal structure of the data storage inside databases, however,
has not yet received much attention from the digital forensic research community. In this paper, we want to show that the diversity of
B+-Trees, a widely used data structure in today’s database storage engines, enables a deep insight of the database’s history.
Hidden manipulations such as predated INSERT operations in a logging database can be revealed by our approach. We introduce
novel forensic techniques for B+-Trees that are based on characteristics of the tree structure and show how database management
systems would have to be modified to even better support tree forensic techniques.
Index Terms: database forensics, b+ tree, InnoDB

Introduction
 Modern database systems have a very high
traceability of modifications because of intense logging
mechanisms. Database storage engines such as InnoDB
for MySQL store every single manipulation statement in
their log files, thus making hidden manipulation of
database records a difficult task. However, if tracks of
manipulations are removed from log files, traditional
database forensic techniques are ineffective, because
they are limited to mainly data file and log file analysis. A
malicious database administrator, who has full access to
the database and the log files, can effectively cover
tracks of manipulations.
 In this paper, we introduce a novel forensic
technique on the B +-Tree level of the database storage
engine based on the ideas described in [1]. The concept
of our approach is a sanity check for database content by
comparing a stated insertion sequence to the data stored
in the tablespace, the transaction logs and the B+-Tree
structure of the indexes.
 While a forensic analysis of a B+-Tree is not likely to
contain precise information on which data was modified
at what exact time, it can be used very effectively to
prove the violation of security and compliance policies.
Compliance in a database is usually ensured by access
controls, stored procedures, triggers, and audit logs. A

database user might only have permissions to insert into
a table and not delete. In addition, the user might not
have permissions to insert directly into the table but only
to execute a stored procedure. This procedure would
create additional audit logs, ensure that only increasing
time stamps are used and enforce other integrity
constraints.
 If the current B+-Tree cannot be derived from the
insertion sequence record in the log files or does not
match the insertion policy (e.g. strict ordered insert only),
a manipulation of the database is very likely. B +-Tree
forensic cannot replace tra-ditional database forensic
methods, because evidential quality varies greatly on a
case-by-case basis. However, our approach can
substantiate evidence collected by other methods.
 A second area for its application could be file
system foren-sics. Many of today’s files systems such as
NFTS, ReiserFS, and BtrFS use B+-Trees for their
internal organization of stored files. Previous forensic
methods on file system layer [2], [3], [4], [5], [6] do not
analyze the structure of the underlying B+-Tree, still
Koruga et al. [7] reconstructed the B-Trees of filesystems
to recover deleted files.
 Our main contributions are to show that the
structure of a database’s B+-Tree can be a very important
characteristic of the insert order of the table and to show

 67 Bodhi International Journal of Research in Humanities, Arts and Science

 Vol.2 No. 1 October 2017 e-ISSN: 2456-5571

that the analysis of a B+-Tree allows to draw forensic
conclusions to disprove an input order extracted from log
files.

Background and Related Work
Traditional Database Forensics
 Today’s database forensic is mainly based on data
file and log file consistency checking (e.g.[8]). A work by
Fruhwirt¨ et al. [9] describes the layout of InnoDB’s
storage files. Log files in InnoDB can recover every single
data manipulation statement submitted to a table,
because the entire statement is stored. So, an
investigator can reconstruct not only older versions of the
database, but also manipulation statements that were
applied to the database. The data files of InnoDB can be
also used for digital forensics. Deleted records are not
removed from data files when a user deletes them from
the database management system. Instead, they are
only flagged as deleted and can be recovered as long as
the database storage engine has not overwritten the
record with new data.
 The InnoDB storage engine makes extensive use of
check-sums, thus data manipulations are difficult to
perform. How-ever, a malicious administrator has full
access to log files and therefore they can not be
considered reliable.

B-Trees and B+-Trees
 A B+-Tree, according to Bayer [10], is a balanced
tree with the following properties:
 Every non-root node contains between b/2 and b
elements. The root node contains b elements at most.
 An inner node with x elements has got x+ 1 child
nodes. All leaf nodes lie on the same level.
 All elements inside a leaf are sorted.
 When an element is added to the B-Tree, the tree is
searched for the leaf the element should be placed in. In
case this leaf node contains less than b elements, the
new element is simply added. If the leaf node contains b
elements, the leaf is split into two leafs and the middle
element is inserted as a new key into the parent node. In
case the parent node contains b + 1 keys after this

operation, the parent node is split too. This is done
iteratively until either a parent node contains less than b+
1 elements, or a new root is formed. In case b/2 is an
even number, the element with number b/2 + 1 is
propagated to the parent node, thus both child nodes will
contain b/2 elements.
 A B +-Tree of order b is defined like a B-Tree of
order b, but all keys reside in the leaf nodes, i.e. all
elements in inner nodes are only for referencing purpose
and the actual data is stored in the leaf nodes. It has to
be defined, if the parent node contains the topping
elements of the lower child nodes, or the bottoming
elements of the higher child nodes, i.e. it has to be
defined in case of splitting a node, whether a copy of the
highest element of the child node containing the lower
elements is propagated to become a key in the parent
node, or the lowest element of the node containing the
higher elements.

Application in Databases
 In databases fast access to data records is crucial.
As I/O operations are typically the slowest task in today’s
computer systems, decreasing required I/O is the primary
aim. Modern database storage engines maintain a so-
called index that al-lows fast lookup of records with a
minimal amount of I/O operations. In database storage
engines such as InnoDB the index builds up a B +-Trees.
The index consists of one or more columns of the table
that should have high cardinality for generating a highly
structured tree. Compared to other implementations of
trees such as B-Trees, B+-Trees have performance
advantages by reducing expensive I/O operations
 A high branching level (i.e. a high number of child
nodes) reduces the height of the tree and therefore the
expensive read operations on nodes.

Database Forensics Using B+ -Trees
Notation and general assumptions
 The following notations and general assumptions
are used throughout this paper:
 b denotes the maximum number of keys in a node
of a given B+-Tree. We call b the order of the tree.

 68 Bodhi International Journal of Research in Humanities, Arts and Science

 Vol.2 No. 1 October 2017 e-ISSN: 2456-5571

 All nodes of a B+-Tree except for the root node have
a keys with b2b c a b and (in case they are not leaf
nodes) a + 1 child nodes.
 We always propagate the highest element of the
lower child to the parent node when splitting a node, i.e.
when splitting the root tree (e1; : : : ; eb) because of
adding the element eb+1, a copy of the element with
number b/2 c + 1 is propagated to become the new root
node.

Forensics on revision secure tables
 The need for regulatory compliance (e.g. the US
Sarbanes-Oxley Act as well as the European Data
Directive on Privacy force companies to effectively
protect the access to sensitive business data and enable
traceability of business processes) drives the demand for
databases that conform to strict limitations on the kinds of
operations that are allowed. So, many companies limit
access to certain databases to a strict insert-only policy,
thus prohibiting deletion and updates on a technical
basis. This scenario is the starting point for the forensic
approach specified in this section.
 The following prerequisites were taken into account:
 Only INSERT, but no UPDATE and DELETE
statements are allowed.
 The considered table has a primary key that is
constantly incrementing (e.g. timestamp in milliseconds).
This key is also used for structuring the B+-Tree as it
creates the index inside the non-leaf nodes.
 The following theorem gives us a statement on the
structure of the emerging trees:
 Theorem III. 1. Let B be a B+-Tree with n > b
elements which are added in ascending order. Then it
holds true that the partition of the leafs of B has the
following structure:
 Proof: We start by inserting b elements into an
empty root, thus when inserting the next element we
have to split the root and generate a new one with two
leafs. The only possibility is to propagate the middle
element to the root and split the leafs in one containing 2b
+ 1, the other containing 2b elements (else one of the
prerequisites for B+-Trees would be violated. Iteratively

when we add elements, it is always added to the
rightmost leaf, thus resulting in three cases:

1. The leaf contains less than b elements) the new

element is added to the rightmost leaf.
2. The leaf contains b elements. The leaf is split into

two leafs, the first (according to the assumption
made above that we always propagate the highest
element of the lower leafs into the parent node)
containing 2b + 1, the second b=2 elements. This
can result in two cases:
a) The parent node is full) it is split itself into two

parent nodes containing b=2 elements and b=2
+ 1 child-nodes each and propagating the
middle el-ement into the next level. Eventually
this could result in the generation of a new root
containing only one single element. Still, no
element will be put into leafs that are left of the
current leaf.

b) The parent node has enough space, in this case
nothing else happens.

 Thus, it is impossible for the tree to add further
elements into leafs except the rightmost. Again, from this
the proposed partitioning follows quite easily.
 The main argument for our forensic approach lies in
the fact that even with full insert rights, normally, in a
database application, a database administrator is not
able to change the data at B+-Tree-level, since this is
solely managed by the DBMS itself. Thus at this level, a
malicious administrator will not be able to fake evidence.
 We will assume that the database does not
rearrange the tree elements (e.g. for reasons of
performance) and we are able to directly read the
structure of the B-Tree (e.g. in InnoDB).
 In a B+-Tree that was built by sorted inserts, non-
sorted insert can be detected by analyzing the fill rate of
the leaf nodes. If data is inserted in a strictly sorted order
(e.g. a logging table with a timestamp as primary key),
the fill rate of all leafs except the rightmost one is,
according to theorem III.1 exactly b2b c + 1 elements.
 In case a malicious administrator inserts an
additional record with a forged, namely pre-dated

 69 Bodhi International Journal of Research in Humanities, Arts and Science

 Vol.2 No. 1 October 2017 e-ISSN: 2456-5571

timestamp, this record may be added to a leaf node that
is not the rightmost one. This happens, if there are
already at least b + 1 elements with a higher keys (i.e.
timestamps) in the table (in case there are less than b+ 1
higher keys in the table, the forged record would be
added to the rightmost leaf. On an eventual split, this
record would then reside in the correct leaf and
additionally this leaf would only contain b2b c + 1
elements).
 When analyzing the fill rate of leaf nodes in this tree,
the pre-dated record is located in a node that has a too
high fill rate for strictly sorted inserts (i.e. > b2b c + 1
elements). This hidden modification can be detected,
because the resulting B+-Tree does not correspond to the
insert policy of the database. Since the elements inside a
leaf node are sorted by default, only the leaf containing
the forged record can be detected, the identification of
the element itself is not possible.
 Be aware that not all inserts of this form can be
detected by this approach, since with a combination of
different forged records, the structure can be fixed again
by adding enough (i.e. 2b + 1) records. Actually, in real life
tree-sizes, this would result in the insertion of many
forged records, which should be detectable by other
means (comparisons, sanity checks). Furthermore, these
insertions also affect at least the parent node, since a
new leaf is generated.
 With this approach, Deleted records can be
detected in a very similar way. When a malicious
administrator deletes one record from a leaf that is not
the rightmost, the fill rate of this leaf node falls to b2b c
elements, which again is detectable. In case more than
one element is removed from the same leaf, the number
of elements falls below b2b c, thus violating the lower B+-
Tree-boundary for the leaf-size. The following re-
balancing will again result in a B+-Tree-structure, that
identifies the manipulation (the merged leafs will result in
a leaf of size > 2b + 1).

Limitations of the Approach
 The most interesting idea regarding this approach
towards database forensics would lie in its generalization

to be suitable for all kinds of operations, no matter what
order they are applied. Unfortunately we can prove that
this is impossible since the B+-Tree does not give us
enough information for this in general. More precisely,
the main limitation of our approach lies in the fact that in
general the operation of inserting an element into a B+-
Tree is not bijective since the inverse operation is not
injective, i.e. even with knowledge on the inserted
elements, it can be impossible to recalculate the original
tree (or an intermediate state), even though the resulting
tree and a log of all operations is available. Thus the
order of insertion (like specified in the revision secure
case) is very important for our approach.

Towards a forensic-aware database
 This section evaluates how today’s database
management systems have to be modified to provide
better forensic evi-dence. For performance reasons,
database management sys-tems tend to generate wide
trees with a small number of levels. Our evaluation
showed that even with 450,000 records in an InnoDB
table, the tree’s height did not exceed a value of 3. Thus,
the B+-Tree does not have much structure to analyze and
the extraction of forensic evidence is difficult. We
evaluated, based on a modified version of InnoDB how a
more structured tree can be generated and what
implications these modifications have on performance.
 In InnoDB, both leaf and non-leaf nodes have a
fixed size of 16 kilobytes. As non-leaf nodes of B+-Trees
only store keys that have a typical length of a few bytes,
there is enough space for adding thousands of keys to a
node before it has to be split into two nodes. Thus, a
typical non-leaf node in InnoDB has a huge number of
children and the resulting tree mostly grows in width but
not in height. To increase forensic value of a database
tree, we considered two approaches that add structure to
an InnoDB tree.
 We first modified the fixed size of nodes in the
source code of InnoDB. While node sizes other than 16
kilobytes are not officially supported, it is still possible to
decrease it to a minimum value of 4 kilobytes. If we
assume an integer primary key of 4 bytes, a non-leaf

 70 Bodhi International Journal of Research in Humanities, Arts and Science

 Vol.2 No. 1 October 2017 e-ISSN: 2456-5571

node in the original InnoDB storage engine can store up
to 4,000 keys. We can reduce the value to 1,000 by
defining a fixed node size of 4 kilobytes in the source
code of InnoDB. This value, however, is still far too large
for the generation of forensic-aware database trees. In a
second evaluation, we increased the size of the primary
keys in order to limit the number of keys that can be
stored in one node. We defined a varchar primary key
with a length of 767, which represents the maximum
length of a key in InnoDB. Using the 450,000 test records
from the previous evaluation, the resulting tree now has a
branching level of 21, i.e., each node has up to 21 child
nodes and the height of the tree raises to 7, which makes
it more valuable for forensic investigations.
 We compared performance of two InnoDB tables,
one with a tree height of 3 (small primary key) and one
with a height of 7 (large primary key). All experiments
were performed with MySQL 5.1.44 on a machine
equipped with an Intel Core i7 2.66 GHz CPU and 8GB of
available system memory. The results (Table I) show that
queries to the forensic-aware database are about twice
as slow as to the database with the wide tree. While the
performance losses are quite big, we argue that there
exist cases (e.g. SOX compliant accounting) where
security outranks performance.

Table 1: Practical Evaluation of Runtime Impact
Statement tree height=3 tree height=7

Simple full table scan 0.0003s 0.0007s
Full table scan for single value 0.0055s 0.0115s
Update one column in entire table 0.1066s 0.2387s

Conclusion and Future Research
 In this work we outlined, how the intrinsic nature of a
database’s underlying B+-Tree can be utilized to thwart
tam-pering by administrative personal able to forge the
commonly used log mechanisms. Additionally, we
discussed a special class of table-policies that can be
used for developing audit tables that comply with
regulations like the US Sarabanes-Oxley Act. For tables
using this policy we are able to give strong forensic
evidence for many cases of retroactive manip-ulation,
thus providing the investigator with a new tool.

 Regarding our future research concerning database-
forensics, we aim at identifying other special subclasses
of tables, for which strong forensic evidence can be
provided by utilizing the B+-Tree-structure. Furthermore,
we want to put a strong focus on qualitative analysis of
the core problem: Identifying all forms of B +-Trees, for
which strong forensic evidence can be provided and
proofing the impossibility to do so for the rest.
Additionally, we want to focus on the development of a
practical tool that can be used by forensic investigators to
compare database log files together with the B+-Tree of
an old InnoDB-database-backup to the B+-Tree of the
current database image.

References

1. M. Mulazzani and E. Weippl, “Aktuelle
Herausforderungen in der Datenbankforensik.”

2. B. Carrier, File system forensic analysis.
Addison-Wesley Professional, 2005.

3. C. Swenson, R. Phillips, and S. Shenoi, “File
System Journal Forensics,” Advances in Digital
Forensics III, pp. 231–244, 2007.

4. A. Burghardt and A. Feldman, “Using the HFS+
journal for deleted file recovery,” digital
investigation, vol. 5, pp. S76–S82, 2008.

5. K. Eckstein, “Forensics for advanced UNIX file
systems,” in Information Assurance Workshop,
2004. Proceedings from the Fifth Annual IEEE
SMC. IEEE, 2005, pp. 377–385.

6. K. Eckstein and M. Jahnke, “Data hiding in
journaling file systems,” in Eingereicht beim
Digital Forensic Research Workshop. Citeseer,
2005.

7. P. Koruga and M. Baca,ˇ “Analysis of B-tree
data structure and its usage in computer
forensics,” in Central European Conference on
Information and Intelligent Systems, 2010.

8. K. Pavlou and R. Snodgrass, “Forensic
analysis of database tampering,” ACM
Transactions on Database Systems (TODS),
vol. 33, no. 4, pp. 1–47, 2008.

 71 Bodhi International Journal of Research in Humanities, Arts and Science

 Vol.2 No. 1 October 2017 e-ISSN: 2456-5571

9. P. Fruehwirt, M. Huber, M. Mulazzani, and E.
Weippl, “InnoDB Database Forensics,” in
Advanced Information Networking and Appli-
cations (AINA), 2010 24th IEEE International
Conference on. IEEE, 2010, pp. 1028–1036.

10. R. Bayer and E. McCreight, “Organization and
maintenance of large ordered indexes,” Acta
informatica, vol. 1, no. 3, pp. 173–189, 1972.

11. B. Ooi and K. Tan, “B-trees: bearing fruits of all
kinds,” in Proceedings of the 13th Australasian
database conference-Volume 5. Australian
Computer Society, Inc., 2002, pp. 13–20.

