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Abstract 
 Today’s forensic techniques for databases are pri-marily focused on logging mechanisms and artifacts accessible in the 
database management systems (DBMSs). While log files, plan caches, cache clock hands, etc. can reveal past transactions, a 
malicious administrator’s modifications might be much more difficult to detect, because he can cover his tracks by also manipulating 
the log files and flushing transient artifacts such as caches. The internal structure of the data storage inside databases, however, 
has not yet received much attention from the digital forensic research community. In this paper, we want to show that the diversity of 
B+-Trees, a widely used data structure in today’s database storage engines, enables a deep insight of the database’s history. 
Hidden manipulations such as predated INSERT operations in a logging database can be revealed by our approach. We introduce 
novel forensic techniques for B+-Trees that are based on characteristics of the tree structure and show how database management 
systems would have to be modified to even better support tree forensic techniques. 
Index Terms: database forensics, b+ tree, InnoDB 
 
Introduction 
 Modern database systems have a very high 
traceability of modifications because of intense logging 
mechanisms. Database storage engines such as InnoDB 
for MySQL store every single manipulation statement in 
their log files, thus making hidden manipulation of 
database records a difficult task. However, if tracks of 
manipulations are removed from log files, traditional 
database forensic techniques are ineffective, because 
they are limited to mainly data file and log file analysis. A 
malicious database administrator, who has full access to 
the database and the log files, can effectively cover 
tracks of manipulations. 
 In this paper, we introduce a novel forensic 
technique on the B +-Tree level of the database storage 
engine based on the ideas described in [1]. The concept 
of our approach is a sanity check for database content by 
comparing a stated insertion sequence to the data stored 
in the tablespace, the transaction logs and the B+-Tree 
structure of the indexes. 
 While a forensic analysis of a B+-Tree is not likely to 
contain precise information on which data was modified 
at what exact time, it can be used very effectively to 
prove the violation of security and compliance policies. 
Compliance in a database is usually ensured by access 
controls, stored procedures, triggers, and audit logs. A 

database user might only have permissions to insert into 
a table and not delete. In addition, the user might not 
have permissions to insert directly into the table but only 
to execute a stored procedure. This procedure would 
create additional audit logs, ensure that only increasing 
time stamps are used and enforce other integrity 
constraints. 
 If the current B+-Tree cannot be derived from the 
insertion sequence record in the log files or does not 
match the insertion policy (e.g. strict ordered insert only), 
a manipulation of the database is very likely. B +-Tree 
forensic cannot replace tra-ditional database forensic 
methods, because evidential quality varies greatly on a 
case-by-case basis. However, our approach can 
substantiate evidence collected by other methods. 
 A second area for its application could be file 
system foren-sics. Many of today’s files systems such as 
NFTS, ReiserFS, and BtrFS use B+-Trees for their 
internal organization of stored files. Previous forensic 
methods on file system layer [2], [3], [4], [5], [6] do not 
analyze the structure of the underlying B+-Tree, still 
Koruga et al. [7] reconstructed the B-Trees of filesystems 
to recover deleted files. 
 Our main contributions are to show that the 
structure of a database’s B+-Tree can be a very important 
characteristic of the insert order of the table and to show 
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that the analysis of a B+-Tree allows to draw forensic 
conclusions to disprove an input order extracted from log 
files. 
 
Background and Related Work 
Traditional Database Forensics 
 Today’s database forensic is mainly based on data 
file and log file consistency checking (e.g.[8]). A work by 
Fruhwirt¨ et al. [9] describes the layout of InnoDB’s 
storage files. Log files in InnoDB can recover every single 
data manipulation statement submitted to a table, 
because the entire statement is stored. So, an 
investigator can reconstruct not only older versions of the 
database, but also manipulation statements that were 
applied to the database. The data files of InnoDB can be 
also used for digital forensics. Deleted records are not 
removed from data files when a user deletes them from 
the database management system. Instead, they are 
only flagged as deleted and can be recovered as long as 
the database storage engine has not overwritten the 
record with new data. 
 The InnoDB storage engine makes extensive use of 
check-sums, thus data manipulations are difficult to 
perform. How-ever, a malicious administrator has full 
access to log files and therefore they can not be 
considered reliable. 
 
B-Trees and B+-Trees 
 A B+-Tree, according to Bayer [10], is a balanced 
tree with the following properties: 
 Every non-root node contains between b/2 and b 
elements. The root node contains b elements at most. 
 An inner node with x elements has got x+ 1 child 
nodes. All leaf nodes lie on the same level. 
 All elements inside a leaf are sorted. 
 When an element is added to the B-Tree, the tree is 
searched for the leaf the element should be placed in. In 
case this leaf node contains less than b elements, the 
new element is simply added. If the leaf node contains b 
elements, the leaf is split into two leafs and the middle 
element is inserted as a new key into the parent node. In 
case the parent node contains b + 1 keys after this 

operation, the parent node is split too. This is done 
iteratively until either a parent node contains less than b+ 
1 elements, or a new root is formed. In case b/2 is an 
even number, the element with number b/2 + 1 is 
propagated to the parent node, thus both child nodes will 
contain b/2 elements. 
 A B +-Tree of order b is defined like a B-Tree of 
order b, but all keys reside in the leaf nodes, i.e. all 
elements in inner nodes are only for referencing purpose 
and the actual data is stored in the leaf nodes. It has to 
be defined, if the parent node contains the topping 
elements of the lower child nodes, or the bottoming 
elements of the higher child nodes, i.e. it has to be 
defined in case of splitting a node, whether a copy of the 
highest element of the child node containing the lower 
elements is propagated to become a key in the parent 
node, or the lowest element of the node containing the 
higher elements. 
 
Application in Databases 
 In databases fast access to data records is crucial. 
As I/O operations are typically the slowest task in today’s 
computer systems, decreasing required I/O is the primary 
aim. Modern database storage engines maintain a so-
called index that al-lows fast lookup of records with a 
minimal amount of I/O operations. In database storage 
engines such as InnoDB the index builds up a B +-Trees. 
The index consists of one or more columns of the table 
that should have high cardinality for generating a highly 
structured tree. Compared to other implementations of 
trees such as B-Trees, B+-Trees have performance 
advantages by reducing expensive I/O operations 
 A high branching level (i.e. a high number of child 
nodes) reduces the height of the tree and therefore the 
expensive read operations on nodes. 
 
Database Forensics Using B+ -Trees 
Notation and general assumptions 
 The following notations and general assumptions 
are used throughout this paper: 
 b denotes the maximum number of keys in a node 
of a given B+-Tree. We call b the order of the tree. 
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 All nodes of a B+-Tree except for the root node have 
a keys with b2b c a b and (in case they are not leaf 
nodes) a + 1 child nodes. 
 We always propagate the highest element of the 
lower child to the parent node when splitting a node, i.e. 
when splitting the root tree (e1; : : : ; eb) because of 
adding the element eb+1, a copy of the element with 
number b/2 c + 1 is propagated to become the new root 
node. 
 
Forensics on revision secure tables 
 The need for regulatory compliance (e.g. the US 
Sarbanes-Oxley Act as well as the European Data 
Directive on Privacy force companies to effectively 
protect the access to sensitive business data and enable 
traceability of business processes) drives the demand for 
databases that conform to strict limitations on the kinds of 
operations that are allowed. So, many companies limit 
access to certain databases to a strict insert-only policy, 
thus prohibiting deletion and updates on a technical 
basis. This scenario is the starting point for the forensic 
approach specified in this section. 
 The following prerequisites were taken into account: 
 Only INSERT, but no UPDATE and DELETE 
statements are allowed. 
 The considered table has a primary key that is 
constantly incrementing (e.g. timestamp in milliseconds). 
This key is also used for structuring the B+-Tree as it 
creates the index inside the non-leaf nodes. 
 The following theorem gives us a statement on the 
structure of the emerging trees: 
 Theorem III. 1. Let B be a B+-Tree with n > b 
elements which are added in ascending order. Then it 
holds true that the partition of the leafs of B has the 
following structure: 
 Proof: We start by inserting b elements into an 
empty root, thus when inserting the next element we 
have to split the root and generate a new one with two 
leafs. The only possibility is to propagate the middle 
element to the root and split the leafs in one containing 2b 
+ 1, the other containing 2b elements (else one of the 
prerequisites for B+-Trees would be violated. Iteratively 

when we add elements, it is always added to the 
rightmost leaf, thus resulting in three cases: 
 
1. The leaf contains less than b elements ) the new 

element is added to the rightmost leaf. 
2. The leaf contains b elements. The leaf is split into 

two leafs, the first (according to the assumption 
made above that we always propagate the highest 
element of the lower leafs into the parent node) 
containing 2b + 1, the second b=2 elements. This 
can result in two cases: 
a) The parent node is full ) it is split itself into two 

parent nodes containing b=2 elements and b=2 
+ 1 child-nodes each and propagating the 
middle el-ement into the next level. Eventually 
this could result in the generation of a new root 
containing only one single element. Still, no 
element will be put into leafs that are left of the 
current leaf. 

b) The parent node has enough space, in this case 
nothing else happens. 

 Thus, it is impossible for the tree to add further 
elements into leafs except the rightmost. Again, from this 
the proposed partitioning follows quite easily.  
 The main argument for our forensic approach lies in 
the fact that even with full insert rights, normally, in a 
database application, a database administrator is not 
able to change the data at B+-Tree-level, since this is 
solely managed by the DBMS itself. Thus at this level, a 
malicious administrator will not be able to fake evidence. 
 We will assume that the database does not 
rearrange the tree elements (e.g. for reasons of 
performance) and we are able to directly read the 
structure of the B-Tree (e.g. in InnoDB). 
 In a B+-Tree that was built by sorted inserts, non-
sorted insert can be detected by analyzing the fill rate of 
the leaf nodes. If data is inserted in a strictly sorted order 
(e.g. a logging table with a timestamp as primary key), 
the fill rate of all leafs except the rightmost one is, 
according to theorem III.1 exactly b2b c + 1 elements. 
 In case a malicious administrator inserts an 
additional record with a forged, namely pre-dated 
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timestamp, this record may be added to a leaf node that 
is not the rightmost one. This happens, if there are 
already at least b + 1 elements with a higher keys (i.e. 
timestamps) in the table (in case there are less than b+ 1 
higher keys in the table, the forged record would be 
added to the rightmost leaf. On an eventual split, this 
record would then reside in the correct leaf and 
additionally this leaf would only contain b2b c + 1 
elements). 
 When analyzing the fill rate of leaf nodes in this tree, 
the pre-dated record is located in a node that has a too 
high fill rate for strictly sorted inserts (i.e. > b2b c + 1 
elements). This hidden modification can be detected, 
because the resulting B+-Tree does not correspond to the 
insert policy of the database. Since the elements inside a 
leaf node are sorted by default, only the leaf containing 
the forged record can be detected, the identification of 
the element itself is not possible. 
 Be aware that not all inserts of this form can be 
detected by this approach, since with a combination of 
different forged records, the structure can be fixed again 
by adding enough (i.e. 2b + 1) records. Actually, in real life 
tree-sizes, this would result in the insertion of many 
forged records, which should be detectable by other 
means (comparisons, sanity checks). Furthermore, these 
insertions also affect at least the parent node, since a 
new leaf is generated. 
 With this approach, Deleted records can be 
detected in a very similar way. When a malicious 
administrator deletes one record from a leaf that is not 
the rightmost, the fill rate of this leaf node falls to b2b c 
elements, which again is detectable. In case more than 
one element is removed from the same leaf, the number 
of elements falls below b2b c, thus violating the lower B+-
Tree-boundary for the leaf-size. The following re-
balancing will again result in a B+-Tree-structure, that 
identifies the manipulation (the merged leafs will result in 
a leaf of size > 2b + 1). 
 
Limitations of the Approach 
 The most interesting idea regarding this approach 
towards database forensics would lie in its generalization 

to be suitable for all kinds of operations, no matter what 
order they are applied. Unfortunately we can prove that 
this is impossible since the B+-Tree does not give us 
enough information for this in general. More precisely, 
the main limitation of our approach lies in the fact that in 
general the operation of inserting an element into a B+-
Tree is not bijective since the inverse operation is not 
injective, i.e. even with knowledge on the inserted 
elements, it can be impossible to recalculate the original 
tree (or an intermediate state), even though the resulting 
tree and a log of all operations is available. Thus the 
order of insertion (like specified in the revision secure 
case) is very important for our approach. 
 
Towards a forensic-aware database 
 This section evaluates how today’s database 
management systems have to be modified to provide 
better forensic evi-dence. For performance reasons, 
database management sys-tems tend to generate wide 
trees with a small number of levels. Our evaluation 
showed that even with 450,000 records in an InnoDB 
table, the tree’s height did not exceed a value of 3. Thus, 
the B+-Tree does not have much structure to analyze and 
the extraction of forensic evidence is difficult. We 
evaluated, based on a modified version of InnoDB how a 
more structured tree can be generated and what 
implications these modifications have on performance. 
 In InnoDB, both leaf and non-leaf nodes have a 
fixed size of 16 kilobytes. As non-leaf nodes of B+-Trees 
only store keys that have a typical length of a few bytes, 
there is enough space for adding thousands of keys to a 
node before it has to be split into two nodes. Thus, a 
typical non-leaf node in InnoDB has a huge number of 
children and the resulting tree mostly grows in width but 
not in height. To increase forensic value of a database 
tree, we considered two approaches that add structure to 
an InnoDB tree. 
 We first modified the fixed size of nodes in the 
source code of InnoDB. While node sizes other than 16 
kilobytes are not officially supported, it is still possible to 
decrease it to a minimum value of 4 kilobytes. If we 
assume an integer primary key of 4 bytes, a non-leaf 
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node in the original InnoDB storage engine can store up 
to 4,000 keys. We can reduce the value to 1,000 by 
defining a fixed node size of 4 kilobytes in the source 
code of InnoDB. This value, however, is still far too large 
for the generation of forensic-aware database trees. In a 
second evaluation, we increased the size of the primary 
keys in order to limit the number of keys that can be 
stored in one node. We defined a varchar primary key 
with a length of 767, which represents the maximum 
length of a key in InnoDB. Using the 450,000 test records 
from the previous evaluation, the resulting tree now has a 
branching level of 21, i.e., each node has up to 21 child 
nodes and the height of the tree raises to 7, which makes 
it more valuable for forensic investigations. 
 We compared performance of two InnoDB tables, 
one with a tree height of 3 (small primary key) and one 
with a height of 7 (large primary key). All experiments 
were performed with MySQL 5.1.44 on a machine 
equipped with an Intel Core i7 2.66 GHz CPU and 8GB of 
available system memory. The results (Table I) show that 
queries to the forensic-aware database are about twice 
as slow as to the database with the wide tree. While the 
performance losses are quite big, we argue that there 
exist cases (e.g. SOX compliant accounting) where 
security outranks performance. 

Table 1: Practical Evaluation of Runtime Impact 
Statement tree height=3 tree height=7

Simple full table scan 0.0003s 0.0007s 
Full table scan for single value 0.0055s 0.0115s 
Update one column in entire table 0.1066s 0.2387s 
 
Conclusion and Future Research 
 In this work we outlined, how the intrinsic nature of a 
database’s underlying B+-Tree can be utilized to thwart 
tam-pering by administrative personal able to forge the 
commonly used log mechanisms. Additionally, we 
discussed a special class of table-policies that can be 
used for developing audit tables that comply with 
regulations like the US Sarabanes-Oxley Act. For tables 
using this policy we are able to give strong forensic 
evidence for many cases of retroactive manip-ulation, 
thus providing the investigator with a new tool. 

 Regarding our future research concerning database-
forensics, we aim at identifying other special subclasses 
of tables, for which strong forensic evidence can be 
provided by utilizing the B+-Tree-structure. Furthermore, 
we want to put a strong focus on qualitative analysis of 
the core problem: Identifying all forms of B +-Trees, for 
which strong forensic evidence can be provided and 
proofing the impossibility to do so for the rest. 
Additionally, we want to focus on the development of a 
practical tool that can be used by forensic investigators to 
compare database log files together with the B+-Tree of 
an old InnoDB-database-backup to the B+-Tree of the 
current database image. 
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