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Introduction

Diophantine triples have a rich history, beginning
with Diophantus of Alexandria’s exploration of
integer solutions in polynomial equations. Over the
centuries, mathematicians such as Pierre de Fermat
and Leonhard Euler expanded on his foundational
work, discovering numerous Diophantine triples and
furthering the field of number theory. Among these,
Polynomial Diophantine tuples hold a prominent
position in it.

set of non-zero polynomial with integer coefficient
that possess the unique property where the product of
any two polynomials a, and a  plus
1 yields a perfect square, for all 1=E<j<k
Wherein, a 20m)—k— polynomial tuples, which

are sets of polynomials with integer coefficient
(). 22(7). 809, 200 have the property that the
product of any two polynomials of the set increased
by gives square of another polynomial. There are
numerous polynomial Diophantine tuples holding
different property which can be explored in [1-7].

A polynomial Diophantine triple (=»200-a3()
is regular if (230 —a2(y) a1 (7)) = HE1(=(y) + m)

In this article, sequences of regular polynomial
Diophantine triple protracted from Diophantine pair
employing Vieta-Pell, Vieta-Pell Lucas polynomials
are established. Extensibility of these sequences are
examined and numerical illustrations are obtained
with the aid of MATLAB.
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Sequences of Vieta Polynomials

In this section, we establish Polynomial Diophantine
triple sequences from Vieta polynomials by algebraic
manipulations.

Vieta-Pell polynomial
The Vieta-Pell polynomial is defined as

0. n=i
Ay = [;.y n=1
g1 (¥) — Aa2(3). n>2
Consider the following two Vieta-Pell

polynomials Fa0)=400=2y and B0)=40)=8y' -4y
It is noted that, 0% builds a Diophantine pair as
the product of these polynomials increased by one
result in (4y°-1)%

With the purpose of extending this pair to triple
choose ¥ a5 third tuple, thus

B b +1=m?

B2ty) + B30 +1 = m?
Voiding f»
(b200 — Fa(7)) = e’B2(y) —e’Fa(y)

Initiating the linear conversions as = =f+Ff@¥:,
m=&+f0%  The above expression turns into a
notable Pell equation

#Z=pet+1
where D=16y*-8y? , which does not form a perfect
square polynomial and the fundamental solution of
the Pell equation is (P82) = (47" —11).

By applying the fundamental solution to one of
the linear conversions (58¥ @) and substituting 1,
B | third polvnomial emerges

fialy) =By +8y* —2y—2

As a result, (FmFxBEz0%Bal¥)} s the
polynomial Diophantine triple extended from pair.

Correspondingly, consider the Diophantine pair
(F1G-£200-Ba¥)). Adhering to the previously mentioned
steps, a Diophantine triple (P202-Faly)hsl¥)) s
generated with

Ba(y) = 8y* — 4y
Faly) =By +8y* —2y—2
fuly) = 3297 + 169 — 14y —4
(B0, Ba(). s (7))

Hence, E20:Baly.is¥)) is another polynomial
Diophantine triple.

Utilizing this method an infinite sequence of
polynomial Diophantine triples

€02y.8y" —4.By> + By’ — 2y —2).(8y> — 4y By” + 8y —2y— 2329  + 169”14y
Bk ; FE— |

is established.

Vieta-Pell Lucas polynomial
The Vieta-Pell Lucas polynomial is defined as

2, n=0
() = LZ:'- a=1
Wa 1) — Ve 2(y). n22

Consider two Vieta-Pell Lucas polynomials
LWN=F0)=2r and LH=mE=-%'-e& LOLLG)
forms a Diophantine pair, as their product when
added to a polynomial ®@-#~_ results in perfect
square of another polynomial.

Now, for extending it to triple
perform the algebraic manipulations outlined above.
This process yields the third polynomial tuple

B = By +8y° —ay—2a
Thus, LoAREBD s a

polynomial Diophantine triple.
Similarly, another triple GOXLEMLOD is derived
from the Diophantine pair (2&602) with

120 =8y — 6y
B =8y +8p —ay—4
WG =327 + 16y° —22y -8

(Lo BON

D4 — 498 -

Therefore, OMBEBON is another HA—4yI-
polynomial triple. As a result, this method establishes
an infinite number of sequences of such polynomial
triples

{ay.sy’—ﬁy.ﬂs;:+w’—Jy—:)u(sy’—ﬁy.uy‘+nr‘—4y—4.32y’+16y=—zzr
Regularity
The triple E:0o)k0)b - 28y’ —ap.85" +o¢' -2y-2 {g regular as
@By? - 2)% = af16y* — By + 1)

Similarly, the triples B0 BG}B0ON | GXBOMBOD,
oMUY also exhibit regularity, adhering to the
condition.

Extensibility
To extend the triples to quadruples choose the fourth
polynomial tuple as BOY in (MO)B0F)-Bs0D) such

that,
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PG *BF) + 1 = a5?

B0 =B +1=af
Faly) *B(¥) + 1 = =52

Adhering to the same criteria, the value of fourth
polynomial tuple is

=9 +1672 + 4y -4

However, substituting PO into any of the above
equations does not satisfy the requirement, as the
result is not a polynomial square. Thus, it does not
form a polynomial quadruple.

Likewise, it is observed that zl)BhaGxbGD,
02 BOY and (RGO WOM are inextensible.

Numerical illustrations

Figure 1 Depicts Numerical values for Regular
Polynomial Diophantine triple sequences identified
in MATLAB.

MATLAB Command Window

yncnial Diophantine triple Seq
a 2ell polynomial Diophantine tr
4 12 4 12 30

4 56 2
204

8 496
Vieta 2ell Lucas Polym
for y=1 triple
2 5
€

Dio)
does not exist

Figure 1

Conclusion

An enticing sequences of polynomial Diophantine
trintec [(B10):B200B300)  (B2O%Baly)Be?d): - -}

{02 1200 1300} (2P LA T (P2 e }’ wtilizing Vieta

polynomials namely, Vieta-Pell and Vieta-Pell
Lucas polynomials are established. This work opens

up new avenues for further exploration with other
polynomials using MATLAB.
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