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In this paper, we investigate some properties of self invertible graphs of finite
groups. We study th algebraic structure of self invrtible graph and find the relation
between isomorphic, non-isomorphic groups and their self invertible graphs are
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Introduction
Abstract algebra is largely concerned with the study
of abstract sets endowed with one or more binary
operations. Recently, graphs associated with rings
seem to be a more interesting and active area compare
to those associated with groups. Our main purpose in
this paper is to describe interactions between finite
graphs and finite groups, have be exploited to give
new result about group-theoretic  graphs.

In recent years, a theory of group-theoretic graphs
has found many applications in engineering and
applied sciences.

Invertible graphs was introduced in 2018 by T.
Chalapathi and R.V.M.S.S. Kiran Kumar [1], they
defined an undirected simple graph IG(I') is called
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invertible graph of a finite group I', whose vertex set
is ', and two vertices a and b in I" are adjacent in
IG(r)ifandonlyifa + b™orb # a™*, where a*
is the inverse of a in T".

In the present paper, we investigate the graph
SIG(I") of a basic algebraic structure I'. We classify
the finite groups whose self-invertible graphs may be
connected or disconnected. Also prove that SIG(T") is
never Eulerian. We also discuss isomorphic theorems
with some applications and structure of invertible
graphs of finite abelian, non-abelian, and cyclic
groups.
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Preliminaries
Definition 2.1. [1] Let (I', x) be a finite group
with identity e. Then an element a € I" is called
a self inverse element of I if a = a™%, where a™* is
the inverse of I". The set of self inverse elements of
T is S(I') and its cardinality is [S(I')|.

Theorem 2.2. [3] A non-empty subset H of
a group I" is a subgroup of T" if and only if a,b €
H =ab™ eH.

Theorem 2.3. [1] Let I" be a cyclic group. Then:
15| ={1if|1"|isodd

2if |I'|is even

Remark 2.4. [2] If there is a one-to-one
mapping a < & ‘of the elements of a group T" onto
those ofa group I', and ifa«<>a and b < b imply
ab —ab then we say that T" and I" are isomorphic

’

andwriteI' =T . Ifweputa =f(a)andb =

f(b) fora,b eI, then f : T" — T s a bijection
satisfying f(ab) = a’'b’ = f(a)f(b).

Definition 2.5. [1] Let I'" be a finite group.
Then an isomorphism from I" onto T is called a
group automorphism and set of all automorphisms
of ' is denoted by Auto(I').

Definition 2.6. [1] An isomorphism from a
simple graph G to itself is called graph
automorphism of G. Also the set of all graph
automorphisms form a group under the operation
of composition. This group is also denoted by
Auto(G) and is called automorphism group of a
graph G.

Self Invertible Graph
Theorem 3.1. The set of all self inverse elements
form a subgroup of an abelian group T.

Proof. Let S = {a € I/a™! = a}. We know
that e = e, e € S. Therefore S# 0. Let a,b €
S. Thena?!=aand b™="h Now (ab?)?!=
(b Htat=bal=bta=abt Thereforea,be
S=ab'€S. HenceS is asubgroup of I.

Remark 3.2. More over S is an abelian
subgroup of T'. For,a,b€S =abeS = (ab) ! =
ab. Now
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ab=(ab)*=b!a!=ba =S is an ablian
subgroup of T'.

Definition 3.3. Let (I", ) be a finite group and
S = {u € T'/u = u*}. We define the self invertible
graph SIG(I") associated with I" as the graph
whose set of vertices coincides with T" such that two
distinct vertices u and v are adjacent if and only if
eitheruxv eES orvxueES.

Throughout this paper S will always denote the
self invertible elements of the group I".

Remark 3.4. Clearly the identity element e is a
trivial self invertible element in the finite group I
Hence e € S. Consequently the cardinality of S is
always greater than or equal to 1.

Example 3.5. Let I = V4, Klien group of
four elements. Thene=e ,a=a',b=b'and
¢ =c L Therefore S = {e,a,b,c}. Then SIG(I")
is the following graph.

1—2

4 — 3
Example 3.6. In (Z4,®), S ={0,2}. Then
SIG(I") is the following graph.
0 1

3 2

Theorem 3.7. For a finite group T, the self
invertible graph SIG(I") is complete if and only if
S=T.

Proof. S =T & every elememnt of T is self
inverse @ u,v €T, uv = (uv) ! €T < any two
distinct u, v are adjacent & SIG(I") is complete.

Example 3.8. Let A be any finte set and
T = (P(A), A). Then S = P(A). Therefore by
Theorem 3.7 SIG(I') is complete.

Theorem 3.9. For any non-trivial finite
group I', the self invertible graph graph SIG(I") is
not empty.

Proof. For any finite group T, e € S. Since I
has more than one element, there existsa € I, either
al=aoral#a Ifal=a thenae=a€s, a

10
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and e are adjacent. If a'# a, then there existb
€ I'" such that a = b. Which implies ab = e.
Therefore a and b are adjacent in SIG(I"). Hence
self invertible graph is not empty.

Theorem 3.10. The diameter of a connected
self invertible graph SIG(T') is either 1 or 2.

Proof. Let T be a finite group with || > 1.
Then consider the following two cases.

Case(i): Suppose S =T'. In view of Theorem
3.7 SIG(T") is complete, and hence diam(SIG(T"))
= 1. Case(ii): Let V (SIG(T")) = {e} uS US|,
where S’ is the set of all non invertible elements.
Since every element in S is adjacent to e and there
is no edge between e and the elements of S". Now
from the construction of SIG(I") for every
element v € S, v is not adjacent to e but adjacent
to every vertex of S. Therefore diam{v} = 2 for
eachv €S'. Also every element in S is adjacent to
both e and the elements of S’, diam{u} = 1 for
each u € S. Hence diamSIG(I') = 1 or 2.

Example 3.11. SIG(Ss) is (6,10) graph.

Solution. Since Ss has 6 elements, |V
(SI1G(S3))|= 6. The elements of Sz are {e, p1, p2, Ps,

pa, ps}, where e= (1 3 2) D1 :(1 g g) 0 =

;)= 1 3R 5 e

(é i 3) Also the elements of S; are either odd

permutation or even permutation. The set of all odd
permutations in Sz has self inverse. Here p1, p2, ps
are odd permutations. Then S = {e, p1, p2, ps}-
Therefore e is adjacent to pi1, p2, ps. Since the
product of two odd permutations is an even
permutation, ps, p2, ps are not adjacent to each other.
Again the product of two even permutations is an
even permutation and pa, ps are not self inverse,
psps = e. Therefore ps and ps are adjacent. Again
product of an odd permutation and an even
permutation is an odd permutation, pips, p2ps, Pspa,
P1Ps, P2Ps, Paps are edges of SIG(S3). Therefore the
total number of edges in SIG(S3) = 3+1+6
10. Hence SIG(Ss) is (6,10) graph.

The following is the graph of SIG(S3).
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€ p
p p
p p
Theorem 3.12. Let I be a finite cyclic group
_(lifuesS)
of even order. Then deg u = {2 if ug S

Proof. If |['|is even, then by Theorem 2.3 |S|
= 2. Clearly e € S. Suppose S = {e,a}. Then e
and a are adjacent. Therefore the degree of e and
aare 1. Let u £S. Then u= ul That is uu# e.
Since I" is a group, there exists two elemets v and
w such that uv = e and uw = a. Therefore u is
adjacent to both v and w. Any other elements in "
are not adjacent to u. Therefore the degree of uis

lifuesS(
2. Hence degu = {2 i]]:u ¢ SEF%
Isomorphic Properties of SIG (T)
In this section, we examine isomorphic properties
of self invertible graphs of finite groups. Also de-
termine their characteristics. We begin with few
examples.

The follpwing Example 4.1 shows that the
isomorphic groups and their self invertible graphs
are same.

Example 4.1.Consider the two groups Z, — {0}
and ' ={T,,T,,T5,T,,Ts,Tg} where T;
(1 2 34 5 6),

1 2 34 5 6

=G 461 3 9)
=03 ¢ 25 1 4)
n=( 1 52 ¢ )
=55 16 4 o)
e=( 5 23 > 1)

Then ¢: Z, — {0} - I" defined by ¢(i) = Tiis
an isomorphism. Their self invertible graphs are
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55— — @ ) ——
SIG(Z7; —{0}) SIG(T)

The following Example 4.2 shows that grups
are not isomorphic and their self invertible graphs
are also not isomorphic.

Example 4.2. Consider the groups (Zs, D)
and Vi, Klien group of four elements. Clearly
they are not isomorphic. The following are the self
inverible graphs.

1— 2 0 1
4 —3 3 2
SIG(V.) SIG((Z4, D))

The following Example 4.3 shows that groups
are not isomorphic but their self invertible graphs
are isomorphic.

Example 4.3. Consider the cyclic group I

= {I, A, B, C, D, E}, where | :(8 8), A=
G De=C Dol Do
(i :i) E (g :g) with respect to
addition modulo6and I’ = {I’,A’,B*,C’,D’,

E’}, where I’ =(8 8), A= (1 :1 , B’
e R e

g

The Cayley table for two groups are

:;) is an abelian group but not cyclic.

e || A |B |[C |D |E . I |A|B | C|D|E
1 | A |B |C |D |E r | |A|B |C|D|E
A |JA|B |C |DJ|E |I A|A |E T |B | C|D
B |[B [C |D |E [I A B |B |I" [C|D|E[A
CcC |C |D |E |I A |B C|C |B|D|E |A]|I

D |D [E |I A|B |C DD |C |E |A|I' |B
E E 1 A B C D E|E |D|A |TI" B | C

I g

The self invertible graphs of " and I are
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1 A 1 A
E B E B
D B c D c
SIG(T') SIG(I")

The following Theorem 4.5 shows that self
invertible graphs of two isomorphic graphs are same
but the converse is not true.

Theorem 4.4. Let ' and I" be finite

groups. If ' = T" , then SIG(I") = SIG(T ).
But the converse is not true.

Proof. Suppose I = I" . Then there is a
group isomorphism f from I"' to I" such that

’

f(a) = a for every elementainT anda’ inIT.
Now define a map ¢ from SIG(T") to SIG(I"” ) by
the relation ¢(a) = f(a) for every vertex a in . By
Remark 2.4, ¢ is a bijection. Now let us prove that
¢ preserves adjacency. For this let ab € S, then ab
= e or ab = u for some u. Then f(ab) = f(e) or
f(ab) = f(u) = f(a).f(b) = f(e) or f(a).f(b) =

f(u). SinceI" =T , f(e),f(u) €S . That is

¢(a).¢(b) = e or¢(a).¢(b) = ¢p(u). Therefore ¢(a)
and ¢(b) are adjacent in SIG(T ).

Similarly if a is not adjacent to b in
SIG(I), then ¢(a) is also not adjacent to ¢(b)

in SIG( ). This shows that SIG(I) =
SIG(T"). The converse is not true, as the

Example 4.2 shows. That is SIG(I") = SIG(T),

it does not necessarily follow that " = T.

The following result is an analogous result
between Auto(I') and Auto(SIG(I")).

Theorem 4.5. If T is a finite group, then
Auto(I') € Auto(SIG(I)).

Proof. Let w € Auto(I'). Theny : I" —» I is
a group isomorphism. Suppose a and b in T are
adjacent in SIG(I'). Thenab € S or ba € S. Let
ab = ufor some u € S. Now y(ab) = y(u) or y(ba)
= y(u).Since vy is an isomprphism, y(a)y(b) =
y(u) or y(b)y(a) = y(u). Also if u €S, then y(u)

12



/ 6 Bodhi International Journal of
Y& Research in Humanities, Arts and Science

€ S. Therefore y(a) is adjacent to y(b) in SIG(T').
This shows that v is a group isomorphism of
SIG(I') to itself. 1t is clear that v €
Auto(SIG(I")). Hence Auto(I') € Auto(SIG(I)).

The following Example 4.6 shows that the
converse of the above Theorem 4.5 is not true.

Example 4.6. Consider the group Zs = {0, 1,
2, 3,4} with respect to addition modulo 5. Define
amapvy:Zs— Zs by w(0) =0,y(l) = 2,y(2) =
3,y(3) = 4,y(4) = 1. Itis clear that Auto(Zs) =
Aut(SIG(Zs)). But y(1 @5 2) = y(3) = 4 and
y(1l) @s y(2) =2 @ 3 = 0. Therefore y(1 Ps
2)F wyw(l) @s ww(2) so that y is not a
homomorphism of Zs. Then wy is not an
isomorphism.
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