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Abstract 

Linalool, a monoterpenoid alcohol widely prized for its aromatic properties, finds 

extensive applications across the flavor, fragrance, and pharmaceutical industries. 

Traditionally sourced from plant essential oils, its production is often constrained by 

low yields, seasonal variability, and the environmental impact of conventional 

agriculture. Metabolic engineering of microalgae offers a compelling and 

sustainable alternative. Leveraging their photosynthetic capabilities, rapid growth 

rates, and ability to thrive on non-arable land, algae present an eco-friendly 

bioproduction platform. This review delves into the current biotechnological 

strategies employed for enhancing linalool synthesis in algae, highlighting the 

critical metabolic pathways, engineering approaches, and the existing challenges 

that need to be addressed for commercial viability.  

Keywords: Algal biotechnology, renewable resources, metabolic engineering, 
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Introduction 

Linalool (C₁₀H₁₈O) is a naturally occurring acyclic 

monoterpenoid alcohol, known for its pleasant floral 

scent and bioactive properties such as antimicrobial, 

anti-inflammatory, and anxiolytic effects (Peana et 

al., 2002). It is commonly found in the essential oils 

of plants like lavender, coriander, and basil. Due to 

increasing demand in perfumery, pharmaceuticals, 

and green pesticides, sustainable production routes 

are urgently needed (Beekwilder et al., 2014). 

 Linalool (3,7-dimethyl-1,6-octadien-3-ol) is a 

chiral monoterpene alcohol that serves as a key 

ingredient in numerous products due to its 

characteristic floral and woody scent. Its demand is  

 

 

 

steadily increasing, driven by consumer preferences 

for natural ingredients. Current industrial production  

heavily relies on extraction from aromatic plants 

such as lavender (Lavandula angustifolia), coriander 

(Coriandrum sativum), and basil (Ocimum 

basilicum) (Bakkali et al., 2008). However, these 

methods are often resource-intensive, 

environmentally burdensome, and susceptible to 

geopolitical and climatic fluctuations. 

 Microalgae, as photosynthetic microorganisms, 

offer a sustainable solution for producing high-value 

compounds. They efficiently convert atmospheric 

CO₂ into biomass using solar energy, thus 

contributing to carbon capture. Their cultivation does 

not compete with food crops for land or freshwater, 
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and they can be grown in diverse environments, 

including saline or wastewater. These attributes 

position microalgae as an ideal platform for the 

biotechnological production of various chemicals, 

including terpenoids (Georgianna et al., 2012). 

Metabolic engineering allows for the redirection of 

algal metabolic flux towards the synthesis of desired 

compounds, making it a powerful tool for sustainable 

linalool production. 

 The limitations of plant extraction—low yield, 

seasonal variation, and land usage—have encouraged 

research into microbial and algal biosynthesis 

(Vickers et al., 2017). Algae, particularly 

cyanobacteria and microalgae like Chlamydomonas 

reinhardtii, provide an ideal platform due to their 

photoautotrophic nature and compatibility with 

genetic engineering (Halfmann et al., 2014). 

 

Linalool Biosynthesis: A Metabolic Overview 

Linalool is synthesized via the isoprenoid pathway, 

which proceeds through two major routes: 

 Mevalonate (MVA) Pathway – Common in 

eukaryotes, archaea, and some bacteria. 

 Methylerythritol phosphate (MEP) Pathway 

– Predominant in algae, cyanobacteria, and 

higher plants. 

 In both pathways, the key precursors isopentenyl 

diphosphate (IPP) and dimethylallyl diphosphate 

(DMAPP) are condensed to form geranyl 

pyrophosphate (GPP), which is then converted to 

linalool by linalool synthase (LIS) (Kirby & 

Keasling, 2009). 

 Terpenoid biosynthesis in plants and algae 

primarily proceeds via two distinct pathways: the 

mevalonate (MVA) pathway and the 2-C-methyl-D-

erythritol-4-phosphate (MEP) pathway. In 

microalgae, the MEP pathway is the dominant route 

for producing plastid-derived terpenoids, including 

those that serve as precursors for linalool 

(Lichtenthaler, H. K. (1999). 

 The MEP pathway, localized in the chloroplasts, 

synthesizes the universal five-carbon isoprenoid 

building blocks: isopentenyl pyrophosphate (IPP) 

and its isomer, dimethylallyl pyrophosphate 

(DMAPP). These precursors are then condensed to 

form longer isoprenoid chains. 

1. IPP and DMAPP Synthesis: Pyruvate and 

glyceraldehyde-3-phosphate are condensed and 

processed through a series of enzymatic 

reactions catalyzed by enzymes such as 1-

deoxy-D-xylulose 5-phosphate synthase (DXS) 

and 1-deoxy-D-xylulose 5-phosphate 

reductoisomerase (DXR), ultimately yielding 

IPP and DMAPP (Lois et al., 2000). 

2. Geranyl Pyrophosphate (GPP) Formation: 

IPP and DMAPP are condensed by geranyl 

diphosphate synthase (GPPS) to form the ten-

carbon monoterpene precursor, geranyl 

pyrophosphate (GPP). 

3. Linalool Synthesis: The final and crucial step 

involves the conversion of GPP to linalool, 

catalyzed by linalool synthase (LIS). This 

enzyme is not naturally present in most algal 

species, necessitating its heterologous 

expression for de novo linalool production. 

 

Metabolic Engineering Strategies for Linalool 

Production  

 The overarching goal of metabolically 

engineering algae for linalool production is to 

increase the availability of precursors (IPP and 

DMAPP) and introduce or enhance the activity of 

LIS. 

 

Enhancing Precursor Supply (MEP Pathway 

Optimization) 

(i)  Overexpression of Rate-Limiting Enzymes: 

The DXS enzyme is often considered a major 

flux-controlling step in the MEP pathway. 

Overexpressing the native or a heterologous 

DXS gene can significantly boost the supply of 

IPP and DMAPP, thus "pushing" more carbon 

flux towards terpenoid synthesis. 

(ii)  Blocking Competing Pathways: In some cases, 

downregulating or knocking out metabolic 

pathways that divert IPP/DMAPP towards other 

undesirable products (e.g., carotenoids or 

chlorophylls) can redirect precursors specifically 

towards linalool biosynthesis (Ma et al., 2016). 
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Heterologous Expression of Linalool Synthase 

(LIS) 

(i)  Gene Introduction: The primary strategy 

involves introducing a plant-derived LIS gene 

into the algal genome. LIS genes from various 

plants, such as Ocimum basilicum (basil), 

Cinnamomum camphora (camphor tree), or 

Clarkia breweri, have been successfully 

expressed in microbial hosts (Degenhardt et al., 

2000). 

(ii) Codon Optimization and Chloroplast 

Targeting: To ensure efficient expression in the 

algal system, the heterologous LIS gene is 

typically codon-optimized to match the algal 

host's codon usage bias. Furthermore, the LIS 

enzyme is often engineered with a chloroplast 

transit peptide to ensure its localization within 

the chloroplast, where the MEP pathway 

precursors are readily available (Lauersen et al., 

2015). 

 

Subcellular Compartmentalization and Enzyme 

Scaffolding: 

(i)  Chloroplast Engineering: Targeting the entire 

linalool biosynthetic pathway (from MEP 

precursors to LIS) within the chloroplast can 

create a metabolically channeled environment, 

minimizing diffusion losses and maximizing 

enzymatic efficiency (Ramesh, S., & Abuelnaga, 

H. (2022). 

(ii) Enzyme Scaffolding: Synthetic biology 

approaches, such as enzyme scaffolding, can 

physically link sequential enzymes in a 

metabolic pathway. This increases the local 

concentration of intermediates and reduces their 

degradation or diffusion away from the active 

sites, potentially enhancing linalool yield 

(Dueber et al., 2010). 

 

Strain Selection and Cultivation Optimization: 

(i)  Model Algae: Chlamydomonas reinhardtii is a 

widely used model microalga due to its well-

characterized genetics, ease of transformation, 

and established molecular tools. Other 

industrially relevant strains like Phaeodactylum 

tricornutum or Nannochloropsis oculata are also 

being explored (Potvin, G., & Zhang, Z. (2010). 

(ii)  Bioprocess Optimization: Cultivation 

conditions (e.g., light intensity, CO₂ supply, 

nutrient availability, temperature) play a crucial 

role in overall biomass accumulation and 

product yield. Two-stage cultivation strategies, 

where cells are first grown under optimal 

conditions for biomass and then shifted to 

conditions favoring product accumulation, can 

be beneficial (Hannon et al., 2010). 

 

Algae as Biofactories for Terpenoids 

Algae are emerging as green cell factories for bio-

based chemicals due to their ability to: 

 Grow on non-arable land and wastewaters 

 Use sunlight and CO₂ for growth 

 Be engineered for high-value compound 

production (Rosenberg et al., 2008) 

 Species like Synechocystis sp. PCC 6803 and 

Chlamydomonas reinhardtii have been successfully 

modified for isoprenoid production including linalool 

(Lindberg et al., 2010). 

 

Metabolic Engineering Strategies 

Pathway Engineering 

Integration of heterologous linalool synthase genes 

(e.g., from Clarkia breweri or Arabidopsis thaliana) 

into algal genomes has enabled production of 

linalool from CO₂ and sunlight (Aharoni et al., 

2003). 

 

Precursor Supply Enhancement 

Overexpression of rate-limiting enzymes such as 

DXS (1-deoxy-D-xylulose-5-phosphate synthase) 

and IDI (isopentenyl diphosphate isomerase) 

improves flux toward GPP (Ajikumar et al., 2010). 

 

Cofactor and Energy Optimization 

Efficient linalool synthesis requires a steady supply 

of NADPH and ATP. Engineering NADPH 

regeneration systems and optimizing light conditions 

can enhance productivity (Zhou et al., 2016). 
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Synthetic Biology and CRISPR Applications 

Recent advances in synthetic biology have enabled 

modular design and rapid prototyping of engineered 

algal strains. CRISPR/Cas systems offer precise gene 

editing to knock out competing pathways and 

enhance flux toward linalool (Wang et al., 2016). 

 Use of regulatory elements (promoters, 

riboswitches, terminators) and biosensors allows 

fine-tuning of expression systems in algal hosts 

(Ruffing, 2014). 

 

Cultivation and Bioprocess Strategies 

For industrial application, cultivation systems (e.g., 

photobioreactors, open ponds) must be optimized for 

growth and linalool accumulation. Strategies include: 

 Two-phase cultivation (growth phase and 

production phase) 

 In situ product removal using solvents or 

adsorbents to reduce toxicity (Jongedijk et al., 

2016) 

 

Waste-to-Value Integration 

Glycerol, a biodiesel by-product, has been explored 

as a low-cost carbon source for linalool production in 

engineered cyanobacteria (Li et al., 2020). This 

approach supports circular bioeconomy goals by 

valorizing industrial waste. 

 

Challenges and Future Directions  

Despite the significant progress in metabolically 

engineering algae, several hurdles remain for the 

commercial production of linalool: 

 Low Linalool Titer and Yield: Current yields 

of linalool in engineered algae are often low, 

limiting their economic viability compared to 

traditional extraction or other microbial 

platforms (e.g., yeast). This can be attributed to 

the complex regulatory networks in algae, 

metabolic burden from heterologous protein 

expression, and potential toxicity of linalool to 

algal cells at high concentrations [13]. 

 Genetic Tool Development: While C. 

reinhardtii has robust genetic tools, many other 

industrial algal strains lack efficient and stable 

transformation systems, limiting the breadth of 

engineering possibilities. 

 Product Recovery and Purity: Linalool is a 

volatile compound, and its in situ recovery from 

aqueous algal cultures can be challenging. 

Efficient and cost-effective downstream 

processing technologies for separation and 

purification are essential. Strategies such as two-

phase bioreactors, where an organic solvent 

layer extracts linalool as it's produced, can 

mitigate product loss and reduce cellular toxicity 

[14]. 

 Scalability and Bioreactor Design: Moving 

from laboratory-scale proof-of-concept to large-

scale industrial production requires optimized 

photobioreactor designs that can provide 

uniform light distribution, efficient CO₂ 

transfer, and robust mixing, especially in regions 

with high solar irradiance like Virudunagar, 

Tamil Nadu. 

 

Future directions should focus on: 

 Advanced Genome Editing: Utilizing 

CRISPR-Cas9 technology for precise gene 

editing and multiplex engineering to 

simultaneously modify multiple genes involved 

in the MEP pathway and LIS expression [15]. 

 Synthetic Biology Approaches: Designing and 

implementing synthetic genetic circuits for 

inducible gene expression, allowing for temporal 

control over linalool production to separate 

growth and production phases. 

 Systems Biology Integration: Employing 

omics technologies (genomics, transcriptomics, 

proteomics, metabolomics) to gain a 

comprehensive understanding of algal 

metabolism and identify new targets for 

engineering. 

 Process Intensification: Developing integrated 

bioprocesses that combine efficient cultivation, 

in-situ product recovery, and streamlined 

downstream purification to enhance overall 

productivity and reduce costs. 
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Conclusion 

Metabolic engineering of algae holds immense 

promise for the sustainable production of linalool. By 

harnessing the power of photosynthesis and applying 

advanced biotechnological tools, we can develop 

eco-friendly and economically viable platforms. 

Addressing the current challenges through innovative 

genetic engineering, synthetic biology, and 

bioprocess optimization will be key to unlocking the 

full potential of algae as microbial cell factories for 

valuable terpenoids like linalool, paving the way for 

a greener bio-based economy. 
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