

AI for Inclusive Healthcare: Opportunities and Challenges in Transgender Health Access and Equity

J. Juana Adeline Swetha¹ & Dr. P. Maria Sophiya²

¹Ph.D. Research Scholar, PG & Research Department of Economics, Holy Cross College (A), Tiruchirappalli

Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu

²Assistant Professor (SG) & Head, PG & Research Department of Economics, Holy Cross College (A), Tiruchirappalli

Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu

Manuscript ID:
BIJ-SPL2-Dec25-ECO-011

Subject: Economics

Received : 18.08.2025

Accepted : 25.10.2025

Published : 31.12.2025

DOI: 10.64938/bijsi.v10si2.25.Dec011

Copy Right:

This work is licensed under
a Creative Commons Attribution-
ShareAlike 4.0 International License.

Abstract

Artificial Intelligence (AI) is revolutionizing healthcare systems at breakneck speed, and there is potential for increased access, efficiency, and individualization. For the transgender community, who are generally subject to systemic discrimination, avoidance of healthcare, and provider incompetence, there is both opportunity and threat associated with AI. This paper critiques the use of AI to achieve inclusive healthcare access for the transgender population. It emphasizes the promise of AI to detect health disparities by analyzing large datasets, enabling gender-affirming care, improving clinician education, and providing individualized, accessible digital services via virtual assistants and chatbots. The paper also discusses some of the critical issues around algorithmic bias, non-representative datasets, data privacy, and the limitations of AI in supplanting human empathy. Basing its arguments on recent empirical studies, it highlights the importance of ethical AI regulation, community-led data practices, and community-focused design in creating AI instruments for marginalized groups. Finally, it posits that AI, if implemented wisely, holds potential to become a catalytic tool to decrease gaps and build up the right to health among transgender people.

Keywords: artificial intelligence, transgender health, inclusive healthcare, algorithmic bias, health equity, digital health

Introduction

Transgender individuals have enduring healthcare disparities that are rooted in structural discrimination, stigma, and marginalization within mainstream healthcare systems. Transgender people, especially in low and middle-income countries like India, face universal barriers to access across the world, such as misgendering, refusal of care, poor insurance coverage, and the necessity of having to teach healthcare workers about their needs. These system failures lead to increased incidences of mental health disorders, drug abuse, suicide, and preventable morbidity among trans people. While there has been progressive legislation, such as the

Transgender Persons (Protection of Rights) Act, 2019, in India, there is still a long way to go in bridging the policy promise and actuality on the ground, particularly in the arena of healthcare service delivery.

With the healthcare industry embracing digital transformation, Artificial Intelligence (AI) is being marketed as a panacea for chronic issues of access, quality, and efficiency. AI technologies, ranging from machine learning algorithms and natural language processing to virtual health assistants, are revolutionizing care delivery and experiences (Chaturvedi et al., 2025). For transgender individuals, AI has the power to revolutionize access

disparities, individualize care, and mitigate provider bias through decision support and training systems. Conversely, the incorporation of AI within healthcare is fraught with legitimate concerns. These are algorithmic bias, privacy of data, absence of contextual appreciation, and the ethical hazards of rolling out AI with a non-inclusive design.

This paper delves into the prospects and warnings involved in applying AI to transgender inclusive health care. Based on interdisciplinary approach, policy documents, and emerging technology trends, it emphasizes the potential revolution that AI can bring and the intrinsic constraints involved. By placing marginalized groups at the forefront, the research will advance the broader discussion on digital health equity and provide practical recommendations for developers, practitioners, and policymakers who share a vision for a more equitable and inclusive healthcare system.

Necessity for AI in Transgender-Inclusive Healthcare

The necessity for artificial intelligence (AI) in affirming transgender healthcare is born out of the necessity to break down systemic disparities and intrinsic barriers to affirming care. Transgender individuals are frequently met with misgendering, exclusion, and avoidance of healthcare, leading to delayed treatment and compromised health. AI offers a toolset that can transform this reality by enabling more responsive, compassionate, and effective care delivery.

Addressing Systemic Failures and Data Gaps

Transgender individuals tend to have lower healthcare utilization and increased discrimination, such as common issues like misgendering and avoidance of healthcare. AI provides an important instrument for recognizing and comprehending these disparities through big-data analysis of large amounts of information, such as qualitative feedback and social media updates (Stage et al., 2025). For example, AI can shed light on challenges faced by transgender patients through cancer care experiences by revealing health inequities and coping

mechanisms using data from social media, thus informing future efforts towards equitable care. This makes it possible for healthcare systems to transcend anecdotal reporting to evidence-based descriptions of the singular needs of marginalised groups.

Enhancing Clinician Education and Competency

An important challenge to transgender-affirmative care is that healthcare providers often lack proper training and information (Stage et al., 2025). This usually makes the transgender patient feel overwhelmed with educating their provider. AI can transform clinician education by:

- Developing extensive training programs on transgender health and identity, trauma-informed care, pain management, and gender diversity. These trainings based on AI have the potential to improve decision-making in real-time, readiness, and response effectiveness among healthcare workers (Alquayt et al., 2025).
- Helping community health workers identify trans-friendly providers by interpreting patient feedback data, thereby decreasing documented barriers to accessing affirming care.
- Supplying voice training technology based on artificial intelligence to assist transgender clients in matching vocal presentation with gender identity, which illustrates a specific use for gender-affirming care (Parks 2025).

Providing Accessible and Empathetic Patient Support

Transgender people, particularly those in rural or underserved communities, are severely hampered in their ability to access care. Virtual assistants and chatbots enabled by AI can close these gaps by:

- Providing digital services in real time and 24/7 support, lowering the workload of human providers and providing instant support for frequently asked questions, symptom checking, and scheduling.
- Potentially offer empathetic responses, sympathy, and emotional support, which have been found to enhance patient satisfaction (Alquayt et al. 2025).

- Providing immediate, anonymous care to Transgender people who might be discriminated against in conventional healthcare environments, rendering care less daunting and more accessible (Babu 2025).

Fostering Personalized and Equitable Care Delivery

AI's capacity to process vast, intricate datasets enables the move towards personalized medicine (Sumathy et al., 2025). Although it helps all patients, it is especially important for transgender individuals whose physiological and psychological requirements may not adhere to conventional binary models. AI can:

- Assist in developing personalized care plans from a patient's history and relevant information, enhancing treatment outcomes and lowering complications (Alquayt et al., 2025).
- Eliminate algorithmic biases by training AI systems on high-quality, diverse, and representative datasets that include diverse patient populations, including transgender patients. The aim is to create AI that is accepting of neurological and gender diversity instead of requiring conformity to strict norms (Parks 2025).

Streamlining Operations and Optimizing Resource Allocation

Effective healthcare systems positively impact marginalized groups indirectly by making the resources more accessible and lessening the administrative load on workers. AI can greatly enhance operational effectiveness by eliminating repetitive tasks such as medical documentation and coding, streamlining supply chain management, and optimizing staff and resource deployment (Varnosfaderani et al., 2024). It enables healthcare practitioners to spend more time on direct, person-centered care, which is crucial for sensitive and complicated domains such as transgender health.

At its core, AI is a facilitator, not a panacea for healthcare disparities, but rather a potent tool. It can illuminate disparities, arm practitioners with

improved tools, and serve patients directly in navigating care systems. If developed and implemented ethically and inclusively, AI can reshape transgender healthcare from reactive to proactive and from exclusionary to equitable.

Possible AI Interventions for Transgender Inclusive Healthcare

AI presents various strategic possibilities to advance transgender health equity. Well-designed and deployed AI technologies can overcome major obstacles for trans populations and help deliver more affirming and equitable health systems.

ChatGPT and Large Language Models (LLMs)

- Thematic Analysis of Patient Feedback: Rapid thematic analysis of patient feedback, such as qualitative health services feedback among transgender patients, can be utilized using ChatGPT in a hybrid human-coding method. This hastens the process of coding and offers actionable findings to optimize patient-provider interactions and care among various populations, with a special mention of transgender patients (Stage et al., 2024).
- Accuracy and Knowledge Regarding Gender-Affirming Care: ChatGPT was tested for its knowledge regarding evidence-based guidelines in gender affirmation surgery (GAS) and gender identity. It was found to be highly accurate and thorough when discussing complex ideas of gender and gender-affirming care, explaining definitions of biological sex, gender, gender expression, and gender identity on a continuum and not as binary.
- Conformity with WPATH Standards: ChatGPT's responses conformed quite well with the World Professional Association for Transgender Health Standards of Care (WPATH SOC) guidelines on the care of gender-diverse individuals, and it cited WPATH in a few answers. There were 74% agreements and 26% neutral answers to WPATH's statements of recommendations (Najafali et al., 2023).

- Patient Education Tool: ChatGPT can be a potential patient education tool for GAS, with the potential to enhance access to information on GAS, enhance emotional support for individuals seeking it, and maximize efficiency in health education on this line (Halaseh et al., 2024).
- Mental Health Support: AI-powered mental health chatbots have the potential to enhance psychiatric need assessment and provide anonymous, instant support for transgender individuals (Wah 2025). Artificial intelligence-based chatbots such as HIVST-Chatbot, TelePrEP Navigator, and Queer AI are cutting-edge technologies for promoting the mental and sexual health of LGBTQ people, including transgender individuals. They assist in the identification of individuals at risk, offer resources, and facilitate role-play for training counsellors. Despite initial research demonstrating high user satisfaction and feasibility, small sample sizes and short-term use specify the need for better content and involvement. Although in their nascent stages, these chatbots provide potential assistance for transgender populations exposed to stigma and limited mental health services (Bragazzi et al., 2023). These models can be developed for the Indian context to reduce disparities in access to mental health services for transgender populations exposed to discrimination in mainstream healthcare environments.

Natural Language Processing (NLP):

- Patient Communication Analysis: NLP allows AI systems to interpret, comprehend, and create human language, which is very important for processing patient communication. It can be used to analyze clinical notes for the emotional and psychological health of patients, especially for understanding the complex experience and mental health requirements of transgender persons.
- Streamlining Medical Documentation: NLP technologies can be used to automate the reading of healthcare providers' notes and refresh

diagnosis summaries. This is critical in order to provide continuity of care for all patients, including transgender patients who might move through different levels of care facilities (Alafari et al., 2025).

- Machine Learning (ML) and Deep Learning (DL):
- Personalized Treatment Planning: AI models, such as ML and DL, review genetic, clinical, and lifestyle information to suggest individualized interventions (Aravazhi et al., 2025). For trans individuals, this would potentially allow for more individualized treatment approaches to pain and mental health management, considering the impact of hormone therapies or surgical procedures.
- Diagnostic Accuracy: DL and ML improve diagnostic accuracy by recognizing complex patterns within large amounts of data, such as medical images (Aravazhi et al., 2025). Bias in these systems may, however, start with unrepresentative data collection, where transgender and neurodivergent individuals may be under-represented or mislabelled. This may result in misdiagnosis or incorrect treatment recommendations, since algorithms may not recognize their specific physiological or behaviour patterns.
- Predictive Analytics: ML in predictive analytics is utilized to predict health problems and streamline resources (Aravazhi et al., 2025). For trans populations, diverse datasets should be utilized to create predictive models so that they do not reinforce biases that may impact the risk assessment or resource allocation.

Telehealth

- Expanded Access to Care: AI-supported telehealth platforms have been of potential use in expanding access to gender-affirming care, especially in rural or underserved communities where specialist providers might be limited.
- Remote Psychiatric Counselling: E-health outreach services, possibly utilizing AI, can

extend remote psychiatric counselling to transgender people, minimizing stigma and geographic barriers (Parks 2025).

Internet of Things (IoT)

IoT devices can monitor patient vitals and report back to AI systems for ongoing remote monitoring (Wah 2025). Not directly targeted at the transgender community, this technology tends to improve access to healthcare services, which can be especially useful for transgender individuals who experience obstacles to conventional face-to-face care based on discrimination or distance.

Robotics

AI-based robots are used to aid in surgical operations, increasing accuracy (Sumathy et al., 2025). Although broad, this might encompass gender-affirming surgery. There's a danger that AI-based systems will misread neurodivergent behaviours (Parks 2025), which have much overlap with transgender identity, and potentially affect results in high-stakes scenarios such as search and rescue, if the AI system is biased and does not fully take into consideration human functions of varying kinds.

Big Data Analytics

AI's capacity to examine large amounts of intricate databases is central to pattern identification and proposing remedies (Alquayt et al., 2025). For transgender medicine, this requires data gathering practices that embrace diversity to capture representative gender identities and mental profiles to avoid aggravating current inequalities through data-driven decision-making.

Though AI technologies promise enormous potential for increasing accessibility, personalization, and support, especially in mental wellness and information sharing, their deployment requires strict attention to data representativeness, algorithmic equity, and ethical control. Without these requirements, AI has the potential to amplify current biases within society, further excluding a population already at risk of systemic discrimination, much like

a mirror reflecting an inaccurate image if not correctly adjusted with multiple realities.

Risks of AI in Supporting Transgender Health

The use of AI in healthcare, especially among transgender people, has numerous challenges:

Bias and Misinformation

AI systems always inherit existing historical biases present within the data used to train them (Chustek 2024), which can replicate and even strengthen discrimination against marginalized communities, such as transgender and neurodivergent people. Unrepresentative data, e.g., ones that are largely cisgender and neurotypical in representation, can result in misinterpretation, pathologization, or incorrect results for trans patients (Stage et al., 2025). This is further aggravated by problems such as misgendering and health avoidance, which are systemic inadequacies that AI analysis can highlight. Even big language models such as ChatGPT can be biased or present misinformation if not grounded in evidence-based suggestions, at times presenting exclusionary arguments without opposition (Najafali et al., 2023).

Data Privacy and Security

AI systems are based on large amounts of sensitive patient data, which requires strong measures to secure personal information. Fears of data breaches, unauthorized use, or patient record misuse continue to be topical challenges (Sumathy et al., 2025).

Trust and User Acceptance

Low levels of user trust are a major impediment to the mass implementation of AI in healthcare. This issue is compounded by disagreement among experts regarding the very definition of trust in AI in healthcare (Starke et al., 2025). Patients might not trust AI for medical recommendations owing to fears regarding precision and personal data privacy. Cultural and linguistic adaptability problems also delay adoption, especially in multicultural areas (Wah 2025). Medical professionals can also resist embracing AI technologies (Sumathy et al., 2025).

Implementation and Integration Challenges

The widespread adoption of AI in the healthcare sector is hindered by issues like limited resources, poor technical infrastructure, and difficulty in combining AI solutions with current legacy systems. The high initial investment and maintenance costs may be financially cumbersome to some healthcare institutions, particularly in low-income areas (Faiyazuddin et al., 2024).

Regulatory and Ethical Gaps

Of particular concern is the absence of codified legislation and regulations for healthcare AI in particular, which generates uncertainty among stakeholders (Faiyazuddin et al., 2024). Uncertainty through unclear frameworks poses questions regarding accountability, particularly in instances of misdiagnosis, and may impede proper and effective use of AI (Chustecki 2024). State policies that reinforce narrow gender conceptions and are limiting in nature can also complicate inclusive AI design.

Limitations of AI in Empathy and Human Interaction

Though AI may create empathetic messages, it is not able to achieve the context-sensitive verbal and nonverbal empathy expressed by human providers. Human monitoring is still important to ensure data integrity and context validation. Excessive reliance on AI can restrict meaningful contact and communication between patients and healthcare workers (Stage et al., 2025).

Recommendations and Future Directions

To maximally leverage the capabilities of AI and mitigate its weaknesses, a number of strategic moves are necessary:

- Ethical Design and Regulation of AI: Create robust legal frameworks that ensure explainability, transparency, and justice in AI design. These policies should specifically address the interests of transgender people.
- Better Data Practices: Develop AI models on diverse, representative data. Enhance data

stewardship and promote system integrability to create more integrated, institution-crossing care.

- Comprehensive Education and Training: Incorporate transgender-inclusive education into medical schools and create AI literacy training for health professionals to increase confidence and competence.
- Multi-Stakeholder Collaboration: Foster collaboration between policymakers, technologists, transgender advocacy organizations, and healthcare professionals so that AI solutions are responsive and inclusive.
- Patient-Centered Design: Involve transgender individuals directly in the co-design of AI tools so that they align with actual needs and expectations.
- Extended Research and Evaluation: Invest in longitudinal studies to track the effect of AI on transgender health outcomes and build evidence-based interventions.
- Equitable Implementation: Create phased implementation plans and appropriate funding to ensure that vulnerable regions are not excluded.

Conclusion

Artificial Intelligence has the potential to revolutionize transgender healthcare by enhancing access, individualization, and efficiency. To ensure AI becomes useful for transgender health equity, stakeholders must emphasize fair data practices, invest in educating providers, and develop open regulatory frameworks that ensure privacy, transparency, and accountability. Stakeholders such as policymakers, healthcare providers, and technology developers, as well as transgender communities, must work together to construct AI systems that are technically sound and socially equitable. Ultimately, AI should be viewed as an empowering force, and not as a replacement for human care, as part of a larger initiative toward inclusive and affirming healthcare. Built upon equity, participation, and justice, AI has the potential to be a revolutionary force in shaping healthcare systems that work for all people, regardless of gender identity.

References

1. Alquayt, A., Al Sulaiman, K., Aljuhani, O., Aldardeer, N., Alhammad, A. M., Alenazi, A. O., Alghamdi, B., Alsohimi, S., Alshennawi, M., Alshaya, A. I., Alrashed, M., Shaya, A., O. A., Al-jedai, A., Al-Moallem, M. A., Alsaeedi, R. A., Al-Hashami, H. H., Albarak, H., Al-Shumri, N. O., ... Badreldin, H. A. (2025). AI utilization during Hajj and its potential role in healthcare and clinical services for pilgrims: An overview. *BMC Health Services Research*, 25(1), 876. <https://doi.org/10.1186/s12913-025-13045-5>
2. Babu, A. (2025). Unseen suffering: The urgent need for gender-affirming pain and mental health management for transgender individuals in India. *Frontiers in Public Health*, 13, 1594703. <https://doi.org/10.3389/fpubh.2025.1594703>
3. Bragazzi NL, Crapanzano A, Converti M, Zerbetto R, Khamisy-Farah R. The Impact of Generative Conversational Artificial Intelligence on the Lesbian, Gay, Bisexual, Transgender, and Queer Community: Scoping Review. *J Med Internet Res.* 2023 Dec 6;25:e52091. doi: 10.2196/52091. PMID: 37864350; PMCID: PMC10733821.
4. Chustecki, M. (2024). Benefits and risks of AI in health care: Narrative review. *Interactive Journal of Medical Research*, 13, e53616. <https://doi.org/10.2196/53616>
5. Faiyazuddin, M., Rahman, S. J. Q., Anand, G., Siddiqui, R. K., Mehta, R., Khatib, M. N., Gaidhane, S., Zahiruddin, Q. S., Hussain, A., & Sah, R. (2024). The impact of artificial intelligence on healthcare: A comprehensive review of advancements in diagnostics, treatment, and operational efficiency. *Health Science Reports*, 2(8), e70312. <https://doi.org/10.1002/hsr2.8.e70312>
6. Fatmawati Alafari, Maha Driss, Asma Cherif, Advances in natural language processing for healthcare: A comprehensive review of techniques, applications, and future directions, *Computer Science Review*, Volume 56, 2025, 100725, ISSN 1574-0137,
7. Halaseh FF, Yang JS, Danza CN, Halaseh R, Spiegelman L. ChatGPT's Role in Improving Education Among Patients Seeking Emergency Medical Treatment. *West J Emerg Med.* 2024 Sep;25(5):845-855. doi: 10.5811/westjem.18650. PMID: 39319818; PMCID: PMC11418867.
8. Maleki Varnosfaderani S, Forouzanfar M. The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. *Bioengineering (Basel)*. 2024 Mar 29;11(4):337. doi: 10.3390/bioengineering11040337. PMID: 38671759; PMCID: PMC11047988.
9. Najafali, D., Hinson, C., Camacho, J. M., Galbraith, L. G., Tople, T. L., Eble, D., Weinstein, B., Schechter, L. S., Dorafshar, A. H., & Morrison, S. D. (2023). Artificial intelligence knowledge of evidence-based recommendations in gender affirmation surgery and gender identity: Is ChatGPT aware of WPATH recommendations? *European Journal of Plastic Surgery*, 46, 1169–1176. <https://doi.org/10.1007/s00238-023-02125-6>
10. Parks, M. (2025). The ethics of AI at the intersection of transgender identity and neurodivergence. *Discover Artificial Intelligence*, 5, 34. <https://doi.org/10.1007/s44163-025-00257-1>
11. Prasanna Sakthi Aravazhi, Praveen Gunasekaran, Neo Zhong Yi Benjamin, Andy Thai, Kiran Kishor Chandrasekar, Nikhil Deep Kolani, Priyadarshi Prajwal, Yogesh Tekuru, Lissette Villacreses Brito, Pugazhendi Inban, The integration of artificial intelligence into clinical medicine: Trends, challenges, and future directions, *Disease-a-Month*, Volume 71, Issue 6, 2025, 101882, ISSN 0011-5029, <https://doi.org/10.1016/j.disamonth.2025.101882>
12. Stage, M. A., Creamer, M. M., & Ruben, M. A. (2025). Analyzing patient feedback: A hybrid approach integrating ChatGPT and human coding for TRANSGENDER patient experiences. *PEC Innovation*, 6, 100371. <https://doi.org/10.1016/j.pecinn.2024.100371>

13. Starke, G., Gille, F., Termine, A., Aquino, Y. S. J., Chavarriaga, R., Ferrario, A., Hastings, J., Jongsma, K., Kellmeyer, P., Kulynych, B., Postan, E., Racine, E., Sahin, D., Tomaszevska, P., Vold, K., Webb, J., Facchini, A., & Ienca, M. (2025). Finding consensus on trust in AI in health care: Recommendations from a panel of international experts. *Journal of Medical Internet Research*, 27, e56306.
<https://doi.org/10.2196/56306>
14. Sumathy, M., & Kesavaraj, P. K. (2025). Uses and challenges of AI in healthcare. *Bodhi International Journal of Research in Humanities, Arts and Science*, 9(2), 53–75.
15. Udit Chaturvedi, Shikha Baghel Chauhan, Indu Singh. (2025). The impact of artificial intelligence on remote healthcare: Enhancing patient engagement, connectivity, and overcoming challenges, *Intelligent Pharmacy*, ISSN 2949-866X,
<https://doi.org/10.1016/j.ipha.2024.12.003>.
16. Wah, J. N. K. (2025). Revolutionizing e-health: The transformative role of AI-powered hybrid chatbots in healthcare solutions. *Frontiers in Public Health*, 13, 1530799.
<https://doi.org/10.3389/fpubh.2025.1530799>